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AB8TRACT: A high-level programming language for large complex
relational structures has been designed and implemented.
Thd underlying relational data structure has been imple-
mented using a hash-coding technique. The discussion
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1. The LEAP Language

F l.a. Introduction

Associative memory, the accessing of data through a partial

_specification of its contents, has long been 4 subject of interent in

Computer Science. Although it is no longer coisidered a panacea, asso-

ciative memory has proved to be of great value in artificial intelligence,

Ioperating systems and computer aided design and is a major aspect of in-
F

*formation retrieval. Various proposals for building large hardware
associative memories have not materialized [121 and essentially all the

applications to date have depended on software schemes of some sort. Yn

this paper, we present a programmning language for software associative

memory systems and describe a particular scheme which seems o have several

nice properties.

There are two basic problems in designing any programming system:

ease of use and efficiency of execution. In this section we discuss a

preogramming language which users have found convenient for associative

processing; Section 2 describes an implementation of the language which

Is quite efficient over a range of problems.

The language, LEAP, is an extension of ALGOL (22) to incluae

associations, sets and a number of auxiliary constructs. The problem of

describing a programming language in a journal-size arti,i? is quite

difficult, especially if the system contains new ideas. The prnhiem is

further exacerbated in this case by the fact that LEAP is really a family

of languages, each adding a different set of features to the ALGOL base.
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Besides thc construc,.s dscribicd here there are forms of LEAP wi th matrix

operations, property sets, arid on-line graphics [29, 3O]. Even the associa-

tivc: lungu ge has two compii.'rs: one whiv'i does dynamic type chcing at

execution time and another (described here) which does not. This notion

of fluid language specifications runs against the current emphais on

standardized languugev and will be considered further.

The fluidity of the LEAP design is largely due to its implementa-

tion by means of the translator writing system, VITAL [9, 20). Our varia-

tioni of ALOL (also dezcribed in [20)) was purposely designed with possibi-

lity uf bfeJn C extended, and various applications groups have tailored it

to their needs. With such a system and a good linkage editor, there seems

to 1) ro advantaue to standardizatio,. We view the design of better uni-

v.'rsfl ]m_,iage like the design of better crutches - not of direct interest

to t . [,,i es itrg coiii + tv, facilitic. ls.

Th s al. itude toward prl,,I inl ages ha also influenced the

stylc of this paper. Rather than attUmpt to spell out in detail every nuance

of the ]la,'.u3ge, we have cnnccntrated on the major details. Although LEAP

is fver, lus!; ._ontext-free than othei prograi'mning languages, we have expressed

th. forvr of constructs in 11-ckus-Naur Form. Tile sections on semantics and

praI'rraLics, an-I the examples serve to delimit the syntactically correct con-

struc-ts which are meaninful. The complete formal description of LEAP in

th.u ,totOcni cF V]YL'AL (cf. [9]) is available Iron. the authcrs. This descrip-

tio't du:; io!+. include the data-structure impler.entation which was done sepa-

rat(,]y+ a;id j_ d- jcrbcd in Sect'ion 2. A ,ranslatar writing system capable

of utrtu,,, ji data-structure design would be a signifi calnt contribution to

tile ie' [Jo]
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Many of the ideas in the associative language, LEAP, have

occurred before. If we consider an association to be a triple:

attribute of object is value

we see that the earliest list processing systemq (18, 23] included some

associative processing. By considering an associative structure as a

colored, directed graph we can relate our work to string and tree manipu-

lation languages. Both these developments have been recently surveyed

in [3]. Another field in which associative structures have played a

central role is information retrieval [5). Sets have appeared in simu-

lation languages [32] among others.

The LEAP system is a continuation (7, 26, 27] of our earlier work

on associative processing. The new problems attacked were the development

of a convenient language for handling complex collections of associations

and the extension of the hash-coding structure techniques to a paging

system. We were also interested in the implications of LEAP as a non-

procedural language; the sequencing of associative retrieval statements

is decided by the translator anA the complexity of this process (cf. (13])

portends a diffir Ult future for non-procedural systems. The LEAP system

has been running on the Lincoln Laboratory TX-2 since early 1967 and has

been used in a number of applications, some of which will be discussed in

Section 3.
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l.b. Data types

The basic objects of manipulation in the system are the item

and an ordered triple of items called an association, a relation or

just a triple. In addition to items, we introduce the auxiliary notions

of set, Itemvar, and local variables.

l.b.l. Syntax

<simple type> ::- real integer boolean

< igebraic tyqp> : =<simple type> I <simple type> gW

<leap typrv. ::- item iirnvar oc

<type, :: <algebraic type> 1 <leap type, set

<algebraic typ> <leap type-

examples:

I2ns

rea "e

boolean married

l.b.2. Semantics

A variable of algebraic type behaves exactly like an ALOL variable.

An item Is a symbol, like a LISP [16] atom, which can be manipulated

by the system. If an item is declared with an algebraic type, it will

also have an associated datum of that type. Thus there are some simple

variables which can be used only algebraically, some which can be used

( only symbolically and some which can be used in either manner. A set is

4 __ ____ ____ ____ __ 4
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A an unordered collection of ts containing at must one occurrence of

any item.

An itemyaI is a variable whose value is an item (it is a reference

[36, 37] to an item). A local is an itemvar which obeys special binding

rules and is used only in a restricted set of contexts (of. Section l.d;

the earliest use of locals was in the string processing languages [ 3).

If an itemvar (local) is declared to have an algebraic type, the item which

is the value of the itemvr (1oQl) is assumed to have a datum of that type

in algebraic operations.

1.b.3. Pragmatics

The division of variables into algebraic, symbolic and combination

types is for efficiency reasons. The combination variable requires twice

as much space as either of the others and produces slower code than the

algebraic variable. Sets are implemented by a linked list ordered by the

internal code of the items; this allows the system to carry out, e.g., set

comparisons in time proportional to the sum of the size of the sets rather

than their product.

There are a variety of ways to organize levels of reference within

a programming system. LISP, for example, allows any level of referencing,

but gives the user the responsibility for keeping things straight. ALGOL

is essentially a uniform single-level system. In ALGOL 68 [33], the system

accounts for any level of reference, but imposes rigid conventions on their

use. The system adopted here provides three levels: itemvars and locals,

items, and algebraic data. More elaborate refercncing structures can be

low built using associations, but are the user's responsibi]ity.
oi



I.e. Express iolls

The additional expressions required for LEAP are divided Snto

those which yield algebraic values and those whose values are leap types.

l.e.l. Syntax

<edditional algebraic expressiorr>: :.datum(<item expressio>)I

count(<set expressior> )

<additional boolean expressior>:::=<item expressior> E <set expressior>

<set expressior> C <set expressio> I

<set expression> = <set expressior>

istri pe (<item expressiort>)

<item expressiov::= <iten <itemvar> I <local> I (<triple>) !any

new (<algebraic expression>) I <selector> <item expressiort>

<set expressiort>::= € <set> I (<item expression list>) I

<set expressiort> <set operator> <set expressior>

<item expression> <associative operator> <associative

expression>

<associative expressior>::= <item expressior> I <set expression>

<triplt>::= <item expressior> <associative expressior> <associative

expressiort>

<set uperato>::= n I U j -

<associative operator>::= , I I *

<selector>:= first second third

4.:
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1.c. 2 . Serrint ics

Any <it e xpi-ossoil- yik&1ds, an ites!i a.; its vijlue. If the itei

has an associated alct-ll-a) t: datklml 'Ymc;i aatULUI Will. Yield its value, other-

wi s c dataw is undo i nc.Aix Ixt cxptL 0V;1- Y i'Ayds a set as its valuc.

-The valluc of Conrt jz, the mmmI11.Ii C; itul (> 0) inm the sct. The boolear.

relatonsmiber (C, 'ct au ) anJl set eqculity (=) have their

usual mea ri ngs. The prcdie c: i 1-t is I ruc if its argument evaluates

to a,1 jtL'Pa Which isi U ic~ t1viple ( c! . next paragraph).

i Ither an t. ii b ca be %1,cd whi-cvcr aii item cqzi. There

is a forcint7 coiivc1i4tie. 5 wi.b-" ci uss the value (an -ema) of the local

01 itcri;VL1v in those CULars . fItw czsrvc1d ite. fin", can Only Lppca&r in triples

which arc ol rot rCP~i of ii:L. ( jf ~.) 'Ti uaty operetor new causes

a ,cw 1 tcii c) the vc - I -xJI(1C. p a u. Atrpeem]oe

in parentheses is also an) <K1t' eps-i Omi a positiOnl (f irst, second,

or third) of such an <item c !Limi an Ibe accssed by a <' selecto.>.

examfple:

number -(part, .anl ' fiincer) -= ew (5L)

in the constrImetiCl of ti' tr-iple, the syStem

3) '~forms a triple,: U L: 1 1:orJ i i.ecx

2) ecates anm i tel; froui, the triple- in 1)

[ creates; a necw iA.ce .2 it c-i ii.itialized to5
ii) for!!.s thc tlepl- fl, fr;;I i- a!,.- the it'nis Of 2)arid
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1.d. Statements

There are relatively few new statement types in LEAP because

the control structure of ALGOL was largely adequate for our purposes.

I

l.d.l. Syntax

<additional statement>::= <set statement' <associative statement>

<loop statement>

<set statement>::= u <item expressior> in <set>

remove <item expressiort> from <set>

<set> - <set expressior>

<associative statement>::= make <triplc> I erase <triple>

delete <item expression>

<itei.nvar> -<item expressior>

<loop statement>: := foreach <local> in <set expressiorn> d<statement>

foreach <associative context> do <statement>

<associative context>::= <element> I <associative context> and <element>

<element>::-<admissable triplc> I <boolean expressior>

<local> in <set expressior>

ex am]le s:

tom in sons

Lqn. - .ns U (tom]

m~ke father • tom S bill

foreach x in sons do dtum(x) - datum(x)+2

fqa:h father x E bill do put 4 in sons

S
i,9



_i

l.d.2. Semantics

The set assignment statement copies the value of the <set ex-

pressior> and assigns the result to the set variable. The E ( y)

operation is simply a more efficient way of doing union (subtraction)

of a single element. The We (era) statements cause a new triple to

be added to (subtracted from) the universe of triples (cf. Section 2.b.

for details). An ktemn which was created by a new expression can be des-

troyed by delete. The internal identifier associated with this item will

be reassigned and it is the user's responsibility to assume that there are

no uses of a deleted item.

The <loop statement> are the raison d'etre for the entire system

and will be considered in some detail. The first alternative describes

the loop over the elements of a <set expression>. The <set expressio>

is evalqated once and the <statement> is executed once for each member

of the resulting set. The ,ocal is the loop variable and is assigned the

successive elements of the set; it is treated as an itemvar within the

<statement>.

The loop statement over an <associative context> is much more

complicated. An associative context determines a set of simultaneous

relational equations which the system must solve to determine the values

of the loop variables. A loop variable is a jocal appearing in the asso-

clative context which has not been bound in an enclosing loop. The set of

values for each loop variable is determined once at the beginning of the

loop and the <statement> executed repeatedly with the loop variables bound

to each value in turn. The construct <admissable triple> is meant to convey

the fact that certain syntactically correct <triplo>s are not meaningful

in an <associative context>. The compiler detects the following cases.

10
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a) the triple contains no unbound local

b) the triple contains ihree unbound locals
I

c) the unary operAtor new appears in a triple.

The 'boolean expression> and <set expression> elements of an associative

Lt context serve to restrict the set of values which can be assigned to a

U loop variable. We will discuss the processing of a loop statement with

the aid of examples:

1) foreach x in sons do datum(x) I at(x)+2

This is a loop over a <set expression> whicth is sirply a set 9 .

If x has been declared integer local, then the effect of 1) will be to

increase by 2 the datum associated with each item in sons
r

2) f9;e h f2,he ~ * bill doput xin sons

't We assume that father and bill are items, x- is a local and

sons is a set; the algebraic type of any of these variables is irrelevant.

The system first computes the set of items (ol... Ok which appear in

a triple:

father •o i - bill.

Now the body of the loop is executed k times, once with each oI as the

i value of A (considered to be an itemvar within the body). If sons was

I initially empty it will be precisely the set [ol,... Ok) at the end of

the execution of 2). If k.o, the body of the loop is not executed.

In this simple case the loop statement could be replaced by

2 sons +- sons U father' bill

3) foreaND fathr. x - bilj and sex • x = male d t x in sons

This statement is much the same as 2) exoept that the set or values

for x is made up of these items satisfying both associations. This

11



keeps bill's daughters out of the set o Notice that the order in

which the two relations are processed can be expected to have a marked

effect on performance, le. there are probably many more males than

children of bill. This situation will be discussed in Section 3.

t) (a) foreach father . father - x a z do make

randad x r z

(b) foreach father . x E y an father z do

make _anad X z

The statements (a) and (b) above are entirely equivalent, the

compiler actually will transfors, (a) into (b) supplying a dummy local.

Assuming yz are unbound locals, the statemen. (b) requires solving

for three loop variables. It is clearly inadequate to solve for each

local independently; the system must form a n-tuple of items (a corres-

ondence) which satisfies the associative context. In this case the n-

tuple is an 3-tuple x.w The correspondences are computed tn advance

and the body of the loop executed once for each correspondence. For ex-

ample if the triples of the universe were

father tom "bill

father •eete - tom

father bill E don

father geo22r-e

the statement (b) would yiel. correspondences

pete, tom, bill

CJ4 12i
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and after the execution of (t) the universe would also contain the

triples

grandad tom Z don

grandad pete E bill

l.d.3. Pragmatics

The implementation of sets was discussed briefly in Section l.b.3.

The implementation of make and erase depend heavily on the structure and

are discussed in Section 2.b.The loop statement over <set expressior> is

actually a special case of the<associative context>loop, but is implemented

separately for efficiency. The associative loop is by far the most complex

K construct in LEAP. The formation of correspondences entails building many

partial correspondences which later must be discarded. This is, In itself,

a significazt data structure problem and has been implemented with a hash-

coded triple scheme associating a correspondence number, a local, and an

item. This, combined with the order of processing considerations mentioned

in example 3 above make the compilation of the associative loop statement

decidely non-trivial. This problem is discussed briefly in Section 2 and

at grea length in Hilbing's dissertation (13].

3 --
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l.e.l. Sale programs

begin comment this program will find the polygon

in some figure which has the largest perimeter

4 md will write its name, number of sides &nd its

perimeter. We assume the number of sides of a

polygon is stored as Its datum and the lergth

of a line is stored as its datum, the data base in

assumed to be built in an outer block;

item part, side,type,polygon;

r summax;

loa x;

iitemvar l__t

read(fiegje);

max 4- 0;

f ahpart f fge a d Xj~ E I, olygon d

bgnsum 0;

foreach side ._x E- do

SUM +-- SUM +datum'y);

if sum > max then

bein laest 4- x; max - sum end

end;

write (largest, datum(iret),max)

141
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begin ccaent this program will determine if mary is related

to Joe by virtue of the fact that mary's paternal aunt

is married to Joe's paternal uncle and, if so, will

record that fact;

item father mary, Joe, sex marrieduale1 related, reason;

local x,y;

set uncles;

boolean switch;

uncles i; wtch . false;

foreach father.x father • father Joe and

sex .- mxale do put x in uncles;

foreach father' father • father - mary a x ad

na rried*(x) E y and y in unclesto

begin

make related - mary S Joe;

mak reason (related. •mary m Joe)

e(married .x !*Z)

I switch +- true;

end;

write (switch)

* - end-

15
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2. The LEAP data-structure

The most inmortant construct in LEAP is the <associative context>

vhich implicitly specifies a collection of ITEMs. In this section we

present a rather elaborate two-level storage scheme which was designed

to facilitate the processing of associative contexts. The problem of

retrieving the objects froa memory which are related to a given object

has been a central concern in list processing systems since their inception.

The early list-processing languages (e.g. LISP [18), IPL [233) achieved

a form of associative memory through the use of property (description)

lists. This enabled one to specify the name of a property (attribute)

and an object frum which the system would retrieve the value or list of

values. This facilit freed the user from remembering which ordinal number

he had mentally associated with a property. The property list was imple-

aented as a list of (property, value) pairs linked to the object. When a

retrieval was to be made, the system would search the property list of the

speicified object for the specified property and would return the associated

value. Although this feature of list processing systems is heavily used,

there are serious problems with it frum both a usage and an implementation

standpoint. All of the more recent atteimpts to produce associative retrieval

on conventional computers may be viewed as attempts to solve one or both

of these problems.

The problem with property lists from a uoer'a point of view was that

they are one-way. If one has stored "SCH(JOHN)=DC0" there is no direct way

to find the X such that "S(X)=DCK". This problem became particularly

bothersome in croputer graphics and led to thq development of languages such |

16
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I6
an L6 [15], CRAL (33, 341] AED [28], APL [7] and ASP[16] which have

recently been surveyed (38]. These languages automatically provided

two-way associations and, for reasons described in the next paragraph,

replaced the property list with a block (record) of continuous storage.

The abandonment of the property list was a victory for econcmy over

J
Iflexibility. The property list requires two cells per association and

requires searching at each retrieval. The idea of using a continuous

block of storage for the Property list is not generally attributed to

Ross (271. The idea is simple: by assigning a small integer to each

attribute (e.g. SON - 5) one can achieve rapid retrieval and still only

use one cell per association. The usual implementation is to place the

address of the top of the block (internal name of the object) in an index

register and assemble a load or store instruction having that index field

and having the attribute number in the address field. This scheme is

efficient and has bLcn used in a great variety of systems, but it too,

has drawbacks.

The first difficulty is that the size of the continuous blocks must

be specified in advance. If a new attribute is applied to an object at

Ileast a partial recompilation is required. A further difficulty occurs

in scheduling the numbers assigned to each attribute; there are three

approaches to this problem:

a) Eliminate symbolic attribute names; this requires the user

to remember the relative location of each attribute, but

does not require any extra space (34] and to some extent [7).

b) Require that the type of block resulting from every asso-

4 i tive retrieval be computable at translation time [36, 37].

17



This need not always 1 '--x "xtrn space but makes the

system impqractical for the type of applicatiens considered

here. For example, the APL system [7] was developed because

of the inadequacy of PL/I for computer graphics.

c) Assign a unique computation to each attribute name. This

allows an attribute to apply to any type of object, but

impose a scheduling problem on the user which usually re-

sults in wasted space [15].

In addition, all of these schemes share the problem that the entire block

of storage for an item must be all ocated on the first use of that item.

The data structure schemes discussed above were designeu fox problems

for which the a~sociative structure rather simple and is contained in main

memory. More recently, there have been attempts to extend these systems

to a paging environment [2, 5, 7]. The only previous work on system ca-

pable of handling all seven associative primitives (cf. Section 3.b) and

large data bases have been in query languages and information retrieval [6].

The thrust of these efforts has been rather different; they have generally

emphasized data bases too large for secondary storage and have allowed for

much slower response rates.

2.b. .ae hash-coded associative memory scheme presented here ia an

attempt to solve the associative processing problem for a large range of

applications. Hash-coding (scrambling) is a well known technique for

processing symbol tables, etc. [17, 193 and there was early speculation [211

that hash-coding could lead to efficient associative processing. The par-

18
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ticular schcie dc'Lcribod irc-re is uan exL. izjon of our earlier worl [8,

29, 50] which is designed to work efficiently in a particular tme-

sharing system [1ii.

The first requirement that we place on an associative memory scheme is

that it be capable of answering the seven retrieval requests obtaincd by

substituting zero, one or two variables into the association.

ATTRIBUTE • OBJECT - VALUE

This requirement is an obvious extension of two-way links and has been very

useful in practice. The second major requirement is that any attributes,

objects and values may be combined and that an association can itself be

used as an item. Thc third y. : : ai c4ient is that the time to retrieve

a association should be as small as possible and should be largely inde-

pendent of the total nu' -r of associations. A further requirement for

the system described here is that iL perform as well as possible using

secondary storage within the rule7 of tLe time-sharing system.

The problem is to represent a universe of associations (triples,

relations, facts) of ITENs so as to meet the requirements of the preceding

paragraph. A dictionary phase converts each ITEM to a unique integer so

we can consider a universe of triples of integers (A,O,V). The seven

primitive retrieval operations to be implemented are

1) (A,O,V)

2) (A,O,X)

3) (A,x,V)

4) (x,o,v)

5) (A,X,Z)

- 6) (X,OZ)

7) (x,z,v)

19



where X,Z denote unspeclfi1 . (vrizlables).

There are the additional problems that each v.riable may be multi-

valued and that a given primitive may assign values to two variables.

For eample, if the universe were

(soN, DON, JoHN) -

(SON, DON, JOE)

the following answers would result from primitive questions.

£krimitLye question result

(SON, DCV, JO'M) (SON, DCV, JOHN)

(SCN, JOHN, JOE) NULL A

(sCH, DON, x) x = (JOHN, JOEJ

(x, DON, JOE) x - SON

(x, DON, z) X = SON, Z ={JOHN, JOE)

(X, DON, DON) NULL

The basic ideas underlying the implementatior, are simple. Consider

first the primitive questions involving one variable (numbers 2, 3, 4).

For each of these we hash-code the specified items Lo get an address leading

to the value of the unspecified one. This address is divided into a page

address and a location within the page. Multiple answers are kept on a

linked list which is required to be entirely within the page. The first

primitive question (A,O,V) can be answered u31ng any of three pages; the

questions involving two variables are discu.--<' below.

The three primitive questions with 4wo variables each involve only

L one specified item and so the answers c-.,Id %e represented by a separate

list for each item. The complicated structure described below results from

20
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attempting to combine paging, hash-coding and lists in an efficient

r manner.

There are three types of sections each of which in associated with

one of the positions A,OV of the triple. The number of pages of each

type will vary with the size of the problem. We will consider a typical

A-section in some detail and then show how to extend the discussion to

0 and V sections.

A typical A-section contains all triples having items numbered n

to n+k in the A position of a triple. Let us consider the simple case

of a triple tI  (a,o,v) being placed in an otherwise empty memory.

The high-order bits of a determinp the proper page for t,, the remainder

of a is hashed with o to give a location in the page. At this location

a cell of the following form will be constructed

o CONFLICT

a-USE

V Now a,o,v are the elements of t I and "6" is the value of a tag

I showing the type of our cell (cf. Table 1). The CONFLICT field is used

if more than one (a,o) pair hash to the same address. The a-USE field

is one link in the circular list of all uses of the item 'a' in attribute

position; this list provides all the answers to the primitive question

(a,XZ). The situation can get considerably more complicated as shown

in Figure 1. Figure 1 depicts a segment of the storage of an A type page
under the following conditions. The three pairs (&,,o o), (& ,O1 and

(a ,o3) all hash-code to the same address, i.e. there is a three way con-
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flict. The associations (triples) represented are:

- (al, 1,v2 ) (a3,o5,v5 )

( a 2 ,0 Pv 3 ) .

In addition, the triples (al,ol,v2 ) and (a,,o2,v ) have been

used as ITEMS in other associations; the internal item identifiers assigned

to the respective triples are recorded in the bottom half of the type 5 cells.

The meaning of each of the different cell types is given in Table 1. The

situation depicted in Figure 1 is a worst case and will occur infrequently.

2

''
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CELL TYPE PJRPOSE OF A CELL OF THAT TYPE

0 A two-register free block.

1 Represents a TRIPLE in a collection of TRIPLEs.

2 A one-register free block.

3 Represents a collection of TRIPLEs, in a
11conflict" situation

4 Represents a collection of TRIPLEs.

5 Represents a TRIPLE which is used as an ITEM.

6 Represents a TRIPLE.

7Represcnts a TRIPLE, in a "conflict" situation.

Table 1: Cell Types, and the Purpose for Each
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S The o and v type pages are organized in a similar fashion. Each O-page

contains all uses in the "object" position of some set of items. Also on

the O-page are the triples U/,o,v) for the objects of this page and for

all v. Each V-page contains the uses of a set of items in tht "value"

position and the triples (a,X,v) for all a. Since we require that all

of the multiple values of a primitive associative question be contained

in one page, the pages will have to be of variable size. This is consis-

tent with the conventions of the executive system (11], but does impose

4
an unusual storage allocation scheme.

The storage scheme describe b- is designed to meet the requirements

of variable size pages containing three intertwined data structures. The

three structures are: The USE list, the hash-coded triples, and the free

storage list. The technique used is a variation of the standard idea of

allocating list space and free storage from opposite ends of a block of

memory. The central idea is the "striped" page; we divide storage into

classes based on the low order bits; the particular scheme now in use is

described in Figure 2. Every set of eight consecutive registers is

divided into two which are addressable by hash-coding, one for the heads

of USE lists, and one single and two double free registers. There are

many other possible arrangements and one could design a system which

changed the storage layout automatically.

Let us now consider the overall operation of the storage scheme in

answering the primitive associative questions. The three questions (2),

(5), (4) are answered by hash coding P&, 1&, and COI respectively and

retrieving the set of anrsers from the list at the resulting location on

I



the appropriate A,V or 0 page. T' 4-v questions involving only one

apccified item, (5), (6), (7) are answered directly from the USE list

for the item on the appropriate A, V or 0 page; the answer iL a set of

O-V, A-O or V-A pairs. The fully specified association (1) can be tested

as either (2), (3), or (4) depending on which pages are in main memory.

Thus each primitive association can be answei'ed in one page access and

without searching unless there is a hash-coding conflict. There are,

in addition, commands to insert (MAK) and delete (ERASE) triples from

the universe. The system also creates dummy ITEMs for triples used in

other triples.

As the reader has wu.ioubtedly discovered, the price for this generality

and efficiency Is storage space. Each association (triple) is represented

on an A, an 0 and a V type page; this requires approximately twice (not

thrice) the storage of our earlier scheme [ 8 ] because some of the in-

formation is implicit in the address at which the triple is stored. The

major justification for this storage redundancy is that it is only wasteful

of secondary storage; the main memory requirements are actually smaller

than these of any other known s;heme for answering all the primitive asso-

ciative questions.

There are some additional considerations which make the redundant

storage scheme less costly. Representing the information in three different

ways makes it possible to choose different page distribution strategies

for each type. The system does not normally update the three effected

pages when a MAKE or ERASE is executed; it merely records the fact that

the page must be updated the next time it is brought into a,in memory to be

* accessed. An obvious addition would be an UPDATE command which caused the

* system to do the updating when time was available.
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3. Conclusion

The associative progrmtUng language, LEAP and the hash-coded

associative memory system have been in active use since early 1967.

Although there have been many modifications of the system, the basic

design has remained intact and appears to be sound. LEAP has become

the basic applications programming language for TX-2, although many

problems do not require an associative version. The associative features

have bound application primarily in computer graphics.

We will briefly describe some typical applications, more detailed

information can be requested thv,' .J the authors. One application is an

interactive program for the design of integrated circuits and the layout

of their masks. Another involves an interactive system for pole-zero cal-

culations in circuit desit;n. There is also a program for displaying con-

strained [133] figures, a significant non-procedural problem. There are

also two large interactive programming systems which have been written in

LEAP. The first is a system for synthesizing animated cartoons from a set

of continuous wave-forms specifying the motion of parts of the picture [1].

The second is the recently ccmple+.el ip2--mentation [31] of the two-dimen-

sional programming language Ambit/G (4). In addition, a graphical debug-

ging package for associative structures hus been written.

The predominance of uses in interactive graphics systems is a result

of the interests of the user community. While LEAP is unabashedly a special

purpose language, we anticipate applications in many areas of question

answering (6, 25] and artificial intelligence. There are continuations

of sacme of the LEAP ideas in (17] and the as yet unpublished work of Allen
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Kay at Utah, Edward Sihley at Ti._u' and T-r .Yohnqon at MiT, which

may extend the applJcation areas.

Our experiences with the LEAP language and data sl .ioture has

suggested several possible extenions of each. The complete data structure

scheme described ir ection 2 has not yet been used to nearly its capacity

may be unnecessarily complicated for small graphics applications. More

particularly, it would be very useful to develop a scheme which did not

require a page access to ascertain that an association was not in the

store.

In general, the o.-der in which an <associative context> is processed

can have a profound effect on the performance of the system. For example,

consider two equivalents specification of the brothers of bill.

1) father' father(bill) and sex(x) = male

2) sex(x) = male and father' father(bill)

The second version will require time (and space for correspondences)

proportional to the number of males in the universe. A study of methods

for optimal rearrangement of associative statements has b n completed [1]

and the methods developed there could be incorporated in the copiler.

In the associative language, as in most high-level language; the

A full form of certain constructs (e.g. <-aoop statement>) becomes tedious;

the system could benefit from a simple macro processor [10]. The system

also suffers from the lack of item and set functions, although procedures

which have the same effect are available. At a more basic level one would
th

like the ability to manipulate entire correspondence structures (cf. Section

l.d.2). Finally, a truly comfplete associative system would include a

C" facility for implicitly solving for association.3 which are not explicitly

27



t

represented in the stracurc; thi .qcirc3 a theorem proving program

as part of the access mechanism.

The study of software associative processing is expanding rapidly

and there are a largc number of associative languages under development.

Most of tnese are less canbitious than LEAP, but the proposals for graphical

(two-dimensional) languages [1, 32] deserve some mention. An associative

structure is quite-naturally looked upon as a colored directed graph and

it seems that associative processing is a natural area for graphical languages.

After an early attemot to extend [34] to an associative language, we de-

cided that this was not feasible with current technology. Ironically,

the only currently aviilable graphical 2language was implemented in LEAP

[311. It is too early to predict the usefulness of this system and, in

- -any event, the problems of associative proc2ssing will be with us for

sce tLme to come.
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